ON THE h-DIAMETER OF A RANDOM POINT SET

M J Appel! and R P Russo?

ABSTRACT. Let (SY) beameasurable spaceandlet h: Sx S— R be area symmetric Borel/> x Y -
measurable function on Sx S. Let B be a non-empty measurable subset in Sand let 1 be a probability
measure supported on the restriction of the measurable space (S, ) to B. Let B have finite h-diameter

h=esssup{h(u,v) : u,v € B} < c.
Let U,U1,Us,.... be asequence of independent random points taking values in B according to L and let
Hn = max{h(U;,Uj) :1<i< j<n}

denote the h-diameter of the set {U;,i = 1,...,n}, the maximum pair-wise h-distance among the first n
points.

A theoretical framework is provided from which one may deduce the weak convergenceof H ,, upon
suitable centering and rescaling, to an extreme-value distribution. The sufficient condition provided
herein is quite different from that of Appel, et al. [1]. Several applications of the theory are provided.
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1. INTRODUCTION.

Let (S ) beameasurablespaceandleth: Sx S— R bearea symmetric Borel/Y, x ¥, - measurable
function on Sx S Let B be a non-empty measurable subset in S. Let p be a probability measure
supported on the restriction of the measurable space (S,Y) to B and assume that B has finite h-
diameter

h = esssup{h(u,v):u,veB}
(1.2 = sup{x:ux p{h(u,v) > x} > 0}
< oo

LetU,U1,U>,.... beasequence of independent random pointstaking valuesin B according to . Let P
denote the product measure constructed from copies of |, so that P will refer to the joint distribution
of theU;’s. Let

(1.2) Hn = max{h(U;,U;) :1<i < j<n}

denote the h-diameter of the set {U1,Uo,...,Up}, the maximum pair-wise h-distance among the first
n points. A precise description of the almost-sure limiting behavior of H,, appears in Appel, et al
[2]. We are concerned here with weak asymptotics. Our main result (Theorem 1 below) provides
a methodology for inferring extreme-value limit laws for Hp, upon suitable (non-random) rescaling.
While the sufficient condition of the main result is quite different from that of Appel, et al [1], we
continue here the line of investigation therein.

As an application of our results, we consider the special case where U1,Uo,...,U, is a random
sample from the uniform distribution on a closed disk(sphere) B with center c in RZ(RS). Let h
denote the ordinary |, euclidean metric and let B have radius p = h(c, V), where v is any point on the
boundary dB. If cisknown but p is unknown, then the sample "radius”

Ry =max{h(c,U;) : 1<i<n}
is observable and can be used to construct an exact p x 100% confidence interval for the diameter of

B
2R, 2R,
( 't ) ’
where 0 < t; < t, are points for which t§" — tX" = p, k = 2, 3. However, if both center and radius are
unknown, one may need to rely on the diameter H, in order to construct such an interval. The weak
limiting behavior of H, would thus seem to be of interest.

Appel, Ngjim and Russo [3] studied the weak limiting behavior of diameters over uniform point
sets on compact planar regions having finitely many axes with no verticesin common (the unit square,
for example). In comparison, the disk in R? is interesting as it provides no geometric clue regarding
the location of the verticesthat define the diameter except that for large n those verticesare likely to be
closeto the boundary and nearly diametrically oppositeto each other. See Dette and Henze [5], Steele
and Tierney [11] and, more recently, Appel and Russo [1] for related results on the maximal diameter.
In the context of random geometric graphs, Hy, is the minimal edge length for which the point set
induces a compl ete graph (a graph possessing all (2) possible edges). Many wireless communication
network protocols are based on the properties of random geometric graphs generated on the unit disk;
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see Ellis, et al [7]. For a comprehensive treatment of the theory of random geometric graphs, see
Penrose [9].

2. STATEMENT AND PROOF OF MAIN RESULT.

We assume that h < «. This entails no loss of generality since we may always apply a monotone
transformation (for example h — h/(1+ h)) to an unbounded h to produce an equivalent bounded
one.

Given a point u in B and g < h, define H (u,q) = {ve B:h(u,v) > q}. Let {qn} be monotone
non-decreasing with g, T hasn — . For each n, defineI'y = {v € B: h(w,Vv) > g, for somew € B}.
Clearly,

(2.1) H (u,qn)NTE =0, any uinB.
Define random variables

(22 Yin = Yign () =P (U € H (U, an) | Uk) -
Let F(x) = P(h(U1,U2) <x). Notethat EYyn = 1—F (Qn).

We now state our main result.

Theorem 1. If

(a) the sequence {n?-EY; n} satisfies

(2.3) 0 < liminf [n*- Eyq]] < limsup [n?-EYyn] < oo,
and if

(b) there is a non-random sequence {m,} such that

(2.49) Yin<m=0 (%) , everywhere, asn — oo,
and if

(c)foreachd>0and0<e< 1

(2.5) lim nil P(

j=[ne]

j
z Yk,n - jEYl,n
k=1

Z JSEYLn) = O7

then

(2.6) lim {exp(”z'(l_':m”))) .p(Hngqn)] —1

N—oo 2
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Corallary 1. If (a) above holds and there is a non-random sequence {mp} such that

1
(2.7) n < My 0<nlogn>,as,as —

then (2.6) holds.

REMARKS.

1. For each t > O, take g, to be the quantile

2t

(2.8) qn:qn(t):inf{x:F(x)Zl—ﬁ}.

If the distribution function F(-) above is continuous in its far-right tail, then we have EYyn = 1—
F(gn) = % for al n large, in which case the conclusion from (2.6) isthat P(H, < ¢n) — exp(—t) as

N — oo,

2. Ingeneral, the condition (2.5) is sufficient but not necessary for (2.6) to obtain. To seethis, suppose
the distribution of h(U1,U,) hasafina jump discontinuity initsright tail: for somez> 0, F(x) <1-z
for all x < x* and F (x*) = 1. Then, for agivent, the quantile g,(t) in (2.8) takesthe value x* = h for
al n large enough. With gn = gn(t), EYyn = 1—F (X*) = 0 and al of the probabilitiesin the sum in
(2.5) are equal to 1; the condition failsto obtain. However, the limit (2.6) exists, trivialy.

PROOF OF THEOREM 1. We first state two lemmas that we will use below. The first is Bernstein's
inequality (cf. Serfling [10], page 95).

Lemma 1. (S.N. Bernstein) Let Y,Y,,n > 1, be a sequence of i.i.d. random variables satisfying
Pr(lY —EY| <m) =1, wherem < . Then, for anyt > 0andalln>1

(

The next result follows from the convergence x (1 — exp(—rx)) — r asx — 0.

n
Y Y; —nEY
j=1

—nt?
2VarY + §I'nt

Lemma 2. Fixr > 1. Then for all small x, exp(—rx) < 1—x < exp(—Xx).

Let 0 > 0and 0 < € < 1 befixed but arbitrary. Define events

(2.9) Rhg = {Hh<q}



andforeach j=2,...,n

j—1
(2.10) Ajn = {U;¢UH(Uk,qn)}
k=1
j
(2-11) Ej,n = { ZYkm—jEYl,n ZjSEYl,n}
k=1

j
(2.12) Fin = {ka,n < j(1+6)EY17n}.
k=1

It iseasy to check that
(213) Rn’qn — m?zzALn.

SincenEY; < 115 for large enough n, invoking the double expectation rule and keeping the second-
order termsin the Bonferroni bound, we have

P(Rua) = E[1Ry1q (1-P(ARnIU1,...,Un 1))]

[ n—1
E 1le‘qn (l—;YKn%— 2 P(UnEH (Uj,qn)ﬂH (Uk,qn)‘Uj,Uk)>]
I -1

IN

1<j#k<n-1

+E +(n—1)%EYS,

n—1
1Rn—l,qnﬂEn—1,n (1 - z Yka”)
k=1

P(Ri-1,g,) (1= (N—1)(1=8)EY1) + P(En-1n) + (N— 1)?EYZ,,.

n-1
(2.14) < E IR, g0 ES 4, (1—2\(@)
k=1

IN

Repeating the above argument n — [ne] times gives

n-1 n—-1
P (Rn7Qn) < P (R[ne],qn) 'HT;[lng] (1-J(1- 8)EYl,n) + _ Z P (Ej,n) + _ Z jZEle,n
i=[ne] i=[ne]
) n—-1 n—-1 _
(2.15) < M i (1-j(1-8)EYin)+ X, P(Ejn)+ X I°EYin

j=[ne] j=Ine]
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To get an inequality similar to (2.15) which goesin the other direction, by Bool€e'sinequality we may
write

P(Rug,) = E[P(Rua | Ula -Un-1)]
- [1Rn 1qn Ann|U,...,Un- 1)]
[1Rn 1.onFn-1n (1 P(An | Uy, .. Un—l))]
anfl,qnﬂanl,n (l— nz:lYkm)
k=1
E 1R, 1y Fn10 (1= (M= 1)(1+8)EY1n)]
(1= (n=1)(1+8)EYLn) (P (Ra 1) — P (Ro 1.6 NFY 1))
P(Ra1q,) (1—(n—1)(1+3)EY1n) —P (Fncfl,n)
P (Rn,an) (1-(n—1)(1+38)EY1n) —P(En-1n)-

Y

(2.16)

v

E

Y

AVARLY]

Repeating the above argument n — [ne] times gives

n—1
(2.17) P (Rog) = P (Riej.qn) -H?;[lng] (1—j(1+8)EYyn) — | % }P (Ejn)-
=(ne
By Bool€e's inequality, thei.i.d. assumption and (2.3),
ne
P (Rinjg) = 1- <[2]> ((1=F (an)
¢2
(2.18) R~ 1—E n?. (1—F (qn))
> 1—c-€2

for some constant c. Therefore, liminf, P (R[ng]’qn) can be made arbitrarily closeto 1 if € is chosen
small enough.

By Lemma 2, we have
n—1
(2.19) I (1= j(1-8)EYyn) < exp (- (1-8)EYn | j) :
j=Ine]
and for fixed but arbitrary r > 1

n-1
(2.20) exp (—r(1+6) EYin Y j) <y (1= J(1+8)EYen),

j=[ne]



asn — oo, Note that 2?;[1%] j~(1— s) . To complete the proof of Theorem 1, by (2.4) we have

2tm,

2 -0(n®)

n—1
(2.21) > J’EYZ, <
= ne]

= 0o(1),

asn— oo, By (2.5), the sum 2” L o P (Ej,n) which appearsin both (2.15) and (2.17) vanishes, asn —

co. Theorem 1 now fol Iowsfrom (2 15), (2.17), (2.19), (2.20) and (2.21), multiplying by exp (n*EYy,n)
everywhere. 0

PROOF OF COROLLARY 1. From Lemma 1, we have

iS22
(2.22) P(Ejn) < 2exp (— JO7E N ) :

2VarYy n+ 28mnEYy

Now my, bounds Yy  and hence |Y1 n — EY1n|, &s. ThusVarY;n < maE|Yyn— EYyn| < mEYy s Since
j > [ne], the exponent in (2.22) is therefore bounded above by

nel6?EYin  c(t)

[
2.23 _ ~ -2
(223) my (2+28)  nmy
where
2

(2.24) c(t) = i‘s.

143
If (2.7) holds, then it is clear that (2.5) holds. 0

3. APPLICATIONS.

MINIMUM SPACING IN AN EXPONENTIAL RANDOM SAMPLE. Let U1,Uo,...,U, be independent
random variables with common unit mean exponential distribution. Let X(l) = MiNi=1,...n {X(i)} <

Xiz) < -+ < Xny = maxi—1,..n{ X} bethe order statistics and let Sn = mine1,n { X1 — X }
denote the minimum spacing. Set h(u,v) = 1+\u vk ThenHp = 1#1 Th=1, as. To seehow fast, we
let 0 < x < 1 and compute F(x) = P(h(U1,Uz) <x) = P (U1 —Uz| > 1 1) = exp(~1+1). For
fixedt > 0, wetake g tobethequantileqn(t):inf{x: F(x)>1-— Zt} asabovein (2.8). We invert

F and solve
1

"= 1—1log (1—%>.
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It is easy to check that the random variable Yy ,, is actually a constant here:

Yin(@n) = P(h(Ug,Uk) > an| Uk)

= 1-F(an)
2t
F:

the second equality following from continuity, so that conditions(a), (b) and (trivialy) (c) in Theorem
1 (aswell as (2.7) in Corollary 1) obtain. It followsfrom Theorem 1 that (2.6) holds:

lim {exp(”z' (1-F (q”))> P(Hn < Qn)} = exp(t)- lim P(Hy < qpn)

N—co 2 N—co
2
2 — el imP (3 [1-ep(-s)] > 1)

(3.3) — 1

thus ”—22 -[(1—exp(—sn))] converges weakly to aunit mean exponentia distribution. Thisfact iseasily
deduced from first principles. by the memoryless property, the spacings between the order statistics
are distributed as independent exponentials with respectiveratesn—1,n—2,...,1 so the minimum
spacing is exponential with rate 31 = (3).

|.I.D. SEQUENCES OF INDEPENDENT BERNOULLI TRIALS. Define a distance measure d on pairs
of infinite binary stringsu = (w1 (u), m2(u),...), ®j(u) € {0,1}, by

(3.4) d(u,v) =inf{j>1: ;) =wjV)},

with sup0 = 0. That is, d(u, V) is the first coordinate-wise agreement between u and v. Let h(u,v) =
duv) - Again, h = 1. Let Uy, Us,...,Uy, be an independent sequence of infinite sequences of inde-

1+d(u,v)
pendent Bernoulli trials with common success probability % <p< % We set ¢ = o(p) = 2p(1—p),
N(x) = [{%;], and compute F (x) = P(h(U1,Uz) < x) = 1— o™, Let {qn} be any sequence which
satisfiesq, 1 1 and
On 2logn
su
| 1=cn ' Toge(p)

Condition (@) in Theorem 1 thus holds. It is easy to see that

Yin(ah) = P(h(U,Uy) > tn| U)
(36) = Mk

(3.5)

where

(37) Pik =P Lo wg=1) + (1= P)- Loy w0}
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Letmy= (1— p)N® andz = 2'0?%;"’). Itis easy to check that Z > 1 when p > 1 and therefore that

My =0 <n| c}gn> asn — . Hence condition (2.7) in Corollary 1 holds. From (2.6) we conclude that
. n?
(38) lim [exp (5 -(p“““) P(Hn < Qn)] =1

Likewise, we may redefine

(3.9) d(u,v) =inf{j>1:0j(u) # wj(v)}

and show that the maximum first disagreement time among pairs of n such infinite Bernoulli se-
quences has the limiting distribution (3.8) with ¢ = p?+ (1 — p)?, for any success probability 0 <
p < 1, when the rate g, satisfies (3.5).

[.1.D. UNIFORM POINTS IN THE EUCLIDEAN UNIT DISK AND UNIT SPHERE. For i.i.d uniform
pointsU;, we consider the convergence of Hy, in the closed euclidean disk B of unit radius centered at
the origin. Let u denote an arbitrary point in I',. We will approximate P (U € H (u,by) |Ux = u) forn
large and invoke Corollary 1 to obtain the following result.

Proposition 1.

5n

(3.10) AL@P(n‘%(Z—Hn) >w) = exp (-4""5/2>.

ProOF. In what follows, if A,y and pny are two quantities that depend on both u and n we write
Anu ~ Hny to indicate that Any/pnu — 1 @ n— oo, uniformly inu € T'n. Let by — 0. Draw two line
segments of length g, = 2 — by, from u to points e; and e, on the boundary 0B of B. Let o, denote the
angle formed by these line segments at u and let 6, denote the angle at O formed by the line segments
joininge; toOand e; to 0. Let y, = 1— d(u,0) denote the distance between u and dB. By the law of
cosines
(2—bn)*—(1-y)*-1

2(1—-yu)
2— 4y + b2+ 2y, — V2

2(1-vyu)
1-2b,+wy

(1—yu)

Thus, since 0, — m® as b, — 0, we have

(3.11) ~

n—0y ~ sin(m—06y)
= snoy
(3.12) = (1—cos?0,)Y/?
~ 2(by—yu)Y2.
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Let S, 1 denote the sector in B formed by the line segments joining O to e; and ey, respectively. We
have

2(bn —yu)Y/?

—

Let S, > denote the sector formed by the line ssgments joining u to e; and &, on the disk with center
u and radius 2 — by. By the law of sines, oy, ~ sinoy, = (2 — by) ~1sin@y, so that

(4— 2bp) (b — yy) /2
T

Let Ty 1 be the triangle with vertices O, u and ey, and let Ty, » be the triangle with vertices 0, u and e.
We have

(3.13) PU € Su1) ~

(3.14) PU € S)2) ~

2(1—yu)(bn— YU)l/Z

(3.15) PU € Tu1UTy2) ~ T

Thus we have the non-random bound

PUeH(ubn|Uk=u) = PUeS1)—PUE€eS2)+PUeTu1UTy2)
Z(bn—YU)3/2

T
3/2
2b
(3.16) < M=

for all nlarge, uniformly in u. Moreover, since P(h(U,0) > 2 —y) = 2y — y?, we compute
bn 2(b,, — v)3/2
(3.17) EYin ~ /O %(2— 2y)dy

8b>/?
5t °

N 2t WO 207/
By continuity EYy p = o Thus (3.17) impliesthat m, = =2— =

ho— 0 (n*6/5> , and so my, satisfies (2.7).
Equation (3.17) aso allows us to solve directly for by:

w
(3.18) bn = bn(t) ~ 75 BN e,
wherew = (%)2/ > Equation (3.10) now follows from Corollary 1. O

Next, let B be the closed unit sphere centered at 0 in R3. Using arguments anal ogous to those for the
disk, we will prove the following result.

Proposition 2.

(3.19) lim P (n2/3 (2—Hp) > W) = exp (—%) .

N—soo
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PrROOF. Again, letb, — 0and g, =2—b,. Givenuin T, let
(3.20) C(u) = {x€dB:h(u,x) =0n}

be the circle embedded in the boundary 0B whose center ¢* liesin the interior of B. Let cap, denote
the spherical cap of B whose circular base has circumference C(u). Let h be the height of cap;:
h=1-h(0,¢*). Then (cf. [8])

_ mh*(3-h)

(3.21) Vol (cap,) = —3

Asin the 2-dimensional case, let y, = 1— h(u,0) = denote the distance between u and 9B. From the
Pythagorean relation we have h ~ 2b,, — 2y, so that

(3.22) Vol (cap;) ~ 4n(bn —yu)?.

Next, let §, 1, denote the sphere with center u and radius 2 — by, and let cap, denote the spherical cap
of §,p, contained in cap, and with the same base. Again, the Pythagorean relation implies that the
height h of cap, satisfies h ~ b, — vy, so that

Vol (cap;) — M1

(3.23) ~ 2n(bn—yu)?
Note that a point x in B satisfies h(u,x) > 2— by, if and only if x liesin cap, \ cap,. Thus,

Vol (cap;) — Vol (cap,)

P(U € H (u,by)) Vol (B)

(3.24) ~ g(bn - YU)2

uniformly inuwhich liein 'y, that is, which satisfy h(0,u) > 1— b. Hence we have the non-random
bound

3b2
(3.25) Yin S M i= =8,

for all n large enough. Since P(h(U,0) > 2—y) = 1— (1—y)3, we compute
bn 9(bp —y)?
EYl,n -~ / ( n y) (1—y)2dy
0 2
;
o
Again, by continuity EY;, = 2 and so (3.25) implies that my = O (n*4/3), which shows that m,

satisfies (2.7). Solving for by = (4)*°

(3.26) =

n=2/3,(3.19) now follows from Corollary 1. O

It isinteresting to compare the limit laws (3.10) and (3.19) to the 1-dimensional case of i.i.d. uniform

variables in the interval [-1,1]. In this case, since % is distributed as the range of n variables dis-

tributed uniformly on [0,1], it follows from the elementary properties of order statistics (cf. Arnold
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[4], page 31) that

(3.27) P(Hn < 2t) =nt" 1 — (n— 1t",
from which we obtain

w n—1 AN
(3.28) P(N(2—Hp) >w) = n(l—%) —(n-1) (1—%)

- (s )an(-3).

It isalso interesting to compare (3.10) and (3.19) to results obtained recently on the weak behavior of
the diameter of n uniform points on the boundary of the disk or sphere. From Proposition 1 of Appel
and Russo [1], we have for the circle:

_ . wi/2
(3.29) r!lj;P(h (2—Hp) <w) =1—exp -—— |
while for the sphere:

. > o W
(3.30) lim P (n?(2— Hn) <w) =1 exp( 2).

On the boundary sets (circle or sphere surface, respectively), every observation is potentially a vertex
of the maximal diameter. The convergence of Hy, to 2 is comparatively fast, hence the need for greater
magnification of the difference 2 — H,, in order to get a weak limit. However, on the entire disk or
sphere, since only points observed near the boundary (that is, in a shrinking annulus) can determine
the maximal diameter, the convergence of H, to 2 is comparitively slow.

The appearance of afactor of rt inthefunctional form of the limit in the 2- but not in the 3-dimensional
case is curious, but is easily explained by noting that the calculations used in the proofs of the 3-
dimensional cases compare volumes of the sphere to spherical sub-regions (see, for example (3.24)),
whereas the calculations in the 2-dimensional cases do not.
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